GIS 520 Spatial Problem Solving


Image Classification



How do you classify a raster or satellite image so that land cover can be easily identified and possibly measured? For this assignment we are to develop land cover classes of the Black Water Wildlife Refuge using remotely sensed data. Since we already know what many of the spectral reflectance signatures are for vegetation, developed areas and many other classes of cover, we know that it should be fairly straightforward to come up with a land cover classification for the Refuge.

Analysis Procedures

Most satellite images are viewed in true color- or how we see them with our eyes. For image classification it's better to use a false color image so that we can better distinguish certain types of trees, water or vegetation. Now we can better pick training samples that will group all pixel values with the same value into the category we assign to it. After I've selected enough samples to come up with a proper classification, I run the tool to create an output.











An initial map was created and then compared to the original image. In order to achieve a higher accuracy, more training samples were added or amended, resulting in a final land cover classification image.


Original satellite image in false color

with training samples selected                      Final image with land cover classes














The area calculation of each classified

land cover











Application and Reflection

Image classification is a great tool for being able to readily see different types of land cover and also when you want to differentiate between different types of vegetation. It's also useful for looking at land cover change from several points in time.

Problem Description

A farmer wants to estimate how much seed he will need to plant his crops in the spring and has enlisted my help to calculate the area of his 6 fields.

Data Needed

High resolution image of  the target land area.

Analysis Procedures

The image should be processed in false color so that a more accurate measurement can be taken of the fields. Taking proper training samples will make sure you have a homogenous classification or if the image is good quality, polygons may be drawn around the fields. Once the image is classified, you can create a new field in the attribute table of the output image and create a calculation for area based on the cell size.



ESRI Training Module on Unsupervised and Supervised Image Classification



Raster image of Queenstown, NZ                     Iso Unsupervised classification with 25 classes